Optimization

Optimization of pyrolysis conditions for char production from rice husks and its characterization as a precursor for production of activated carbon

Response surface methodology was employed to optimize pyrolysis conditions for production of char with maximum yield, fixed carbon content, and with minimum ash content from Uganda’s New Rice for Africa (NERICA) 1 rice husk variety. The aim was to obtain rice husk char with more suitable properties as an activated carbon precursor. Mathematical models were developed to explain the relationships between the experimental responses and the pyrolysis parameters of temperature...

Optimization of pyrolysis conditions for production of rice husk-based bio-oil as an energy carrier

Bio-oil is an eco-friendly energy source with potential to substitute fossil-derived fuels. This study optimized pyrolysis conditions for production of bio-oil from rice husks. Response surface methodology based on central composite design was employed to maximize bio-oil yield and high heating value (HHV) while minimizing water and ash contents. The pyrolysis process conditions were; temperature (400–650 °C), heating rate (6000–9750 °Ch-1), and holding time (600–1800 s). Analysis of variance revealed...